ADVANCES IN INTELLIGENT DATA PROCESSING AND ANALYSIS Hybrid evolutionary algorithms for classification data mining
نویسندگان
چکیده
In this paper, we propose novel methods to find the best relevant feature subset using fuzzy rough set-based attribute subset selection with biologically inspired algorithm search such as ant colony and particle swarm optimization and the principles of an evolutionary process. We then propose a hybrid fuzzy rough with K-nearest neighbor (KNN)-based classifier (FRNN) to classify the patterns in the reduced datasets, obtained from the fuzzy rough bio-inspired algorithm search. While exploring other possible hybrid evolutionary processes, we then conducted experiments considering (i) same feature selection algorithm with support vector machine (SVM) and random forest (RF) classifier; (ii) instance based selection using synthetic minority oversampling technique with fuzzy rough K-nearest neighbor (KNN), SVM and RF classifier. The proposed hybrid is subsequently validated using real-life datasets obtained from the University of California, Irvine machine learning repository. Simulation results demonstrate that the proposed hybrid produces good classification accuracy. Finally, parametric and nonparametric statistical tests of significance are carried out to observe consistency of the classifiers.
منابع مشابه
Analysis of Pre-processing and Post-processing Methods and Using Data Mining to Diagnose Heart Diseases
Today, a great deal of data is generated in the medical field. Acquiring useful knowledge from this raw data requires data processing and detection of meaningful patterns and this objective can be achieved through data mining. Using data mining to diagnose and prognose heart diseases has become one of the areas of interest for researchers in recent years. In this study, the literature on the ap...
متن کاملMHSubLex: Using Metaheuristic Methods for Subjectivity Classification of Microblogs
In Web 2.0, people are free to share their experiences, views, and opinions. One of the problems that arises in web 2.0 is the sentiment analysis of texts produced by users in outlets such as Twitter. One of main the tasks of sentiment analysis is subjectivity classification. Our aim is to classify the subjectivity of Tweets. To this end, we create subjectivity lexicons in which the words into ...
متن کاملRecent advances in intelligent paradigms fusion and their applications
Over the past decades, computerized intelligent paradigms have attracted much attention from researchers. Advances in intelligent techniques and approaches, which include neural networks, knowledgebased systems, fuzzy logic, evolutionary algorithms, agent-based techniques, case based reasoning etc, have resulted in many successful applications of these innovative systems. Indeed, applicability ...
متن کاملSparse Structured Principal Component Analysis and Model Learning for Classification and Quality Detection of Rice Grains
In scientific and commercial fields associated with modern agriculture, the categorization of different rice types and determination of its quality is very important. Various image processing algorithms are applied in recent years to detect different agricultural products. The problem of rice classification and quality detection in this paper is presented based on model learning concepts includ...
متن کاملA hybrid spatial data mining approach based on fuzzy topological relations and MOSES evolutionary algorithm
Making high-quality decisions in strategic spatial planning is heavily dependent on extracting knowledge from vast amounts of data. Although many decision-making problems like developing urban areas require such perception and reasoning, existing methods in this field usually neglect the deep knowledge mined from geographic databases and are based on pure statistical methods. Due to the large v...
متن کامل